3.415 \(\int \cos (c+d x) (a+b \sin (c+d x))^8 \, dx\)

Optimal. Leaf size=22 \[ \frac{(a+b \sin (c+d x))^9}{9 b d} \]

[Out]

(a + b*Sin[c + d*x])^9/(9*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0263247, antiderivative size = 22, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {2668, 32} \[ \frac{(a+b \sin (c+d x))^9}{9 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sin[c + d*x])^8,x]

[Out]

(a + b*Sin[c + d*x])^9/(9*b*d)

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \cos (c+d x) (a+b \sin (c+d x))^8 \, dx &=\frac{\operatorname{Subst}\left (\int (a+x)^8 \, dx,x,b \sin (c+d x)\right )}{b d}\\ &=\frac{(a+b \sin (c+d x))^9}{9 b d}\\ \end{align*}

Mathematica [B]  time = 0.359453, size = 137, normalized size = 6.23 \[ \frac{\sin (c+d x) \left (84 a^6 b^2 \sin ^2(c+d x)+126 a^5 b^3 \sin ^3(c+d x)+126 a^4 b^4 \sin ^4(c+d x)+84 a^3 b^5 \sin ^5(c+d x)+36 a^2 b^6 \sin ^6(c+d x)+36 a^7 b \sin (c+d x)+9 a^8+9 a b^7 \sin ^7(c+d x)+b^8 \sin ^8(c+d x)\right )}{9 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Sin[c + d*x])^8,x]

[Out]

(Sin[c + d*x]*(9*a^8 + 36*a^7*b*Sin[c + d*x] + 84*a^6*b^2*Sin[c + d*x]^2 + 126*a^5*b^3*Sin[c + d*x]^3 + 126*a^
4*b^4*Sin[c + d*x]^4 + 84*a^3*b^5*Sin[c + d*x]^5 + 36*a^2*b^6*Sin[c + d*x]^6 + 9*a*b^7*Sin[c + d*x]^7 + b^8*Si
n[c + d*x]^8))/(9*d)

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 21, normalized size = 1. \begin{align*}{\frac{ \left ( a+b\sin \left ( dx+c \right ) \right ) ^{9}}{9\,bd}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sin(d*x+c))^8,x)

[Out]

1/9*(a+b*sin(d*x+c))^9/b/d

________________________________________________________________________________________

Maxima [A]  time = 0.943892, size = 27, normalized size = 1.23 \begin{align*} \frac{{\left (b \sin \left (d x + c\right ) + a\right )}^{9}}{9 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^8,x, algorithm="maxima")

[Out]

1/9*(b*sin(d*x + c) + a)^9/(b*d)

________________________________________________________________________________________

Fricas [B]  time = 3.10267, size = 582, normalized size = 26.45 \begin{align*} \frac{9 \, a b^{7} \cos \left (d x + c\right )^{8} - 12 \,{\left (7 \, a^{3} b^{5} + 3 \, a b^{7}\right )} \cos \left (d x + c\right )^{6} + 18 \,{\left (7 \, a^{5} b^{3} + 14 \, a^{3} b^{5} + 3 \, a b^{7}\right )} \cos \left (d x + c\right )^{4} - 36 \,{\left (a^{7} b + 7 \, a^{5} b^{3} + 7 \, a^{3} b^{5} + a b^{7}\right )} \cos \left (d x + c\right )^{2} +{\left (b^{8} \cos \left (d x + c\right )^{8} + 9 \, a^{8} + 84 \, a^{6} b^{2} + 126 \, a^{4} b^{4} + 36 \, a^{2} b^{6} + b^{8} - 4 \,{\left (9 \, a^{2} b^{6} + b^{8}\right )} \cos \left (d x + c\right )^{6} + 6 \,{\left (21 \, a^{4} b^{4} + 18 \, a^{2} b^{6} + b^{8}\right )} \cos \left (d x + c\right )^{4} - 4 \,{\left (21 \, a^{6} b^{2} + 63 \, a^{4} b^{4} + 27 \, a^{2} b^{6} + b^{8}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{9 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^8,x, algorithm="fricas")

[Out]

1/9*(9*a*b^7*cos(d*x + c)^8 - 12*(7*a^3*b^5 + 3*a*b^7)*cos(d*x + c)^6 + 18*(7*a^5*b^3 + 14*a^3*b^5 + 3*a*b^7)*
cos(d*x + c)^4 - 36*(a^7*b + 7*a^5*b^3 + 7*a^3*b^5 + a*b^7)*cos(d*x + c)^2 + (b^8*cos(d*x + c)^8 + 9*a^8 + 84*
a^6*b^2 + 126*a^4*b^4 + 36*a^2*b^6 + b^8 - 4*(9*a^2*b^6 + b^8)*cos(d*x + c)^6 + 6*(21*a^4*b^4 + 18*a^2*b^6 + b
^8)*cos(d*x + c)^4 - 4*(21*a^6*b^2 + 63*a^4*b^4 + 27*a^2*b^6 + b^8)*cos(d*x + c)^2)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [A]  time = 20.9601, size = 168, normalized size = 7.64 \begin{align*} \begin{cases} \frac{a^{8} \sin{\left (c + d x \right )}}{d} + \frac{4 a^{7} b \sin ^{2}{\left (c + d x \right )}}{d} + \frac{28 a^{6} b^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac{14 a^{5} b^{3} \sin ^{4}{\left (c + d x \right )}}{d} + \frac{14 a^{4} b^{4} \sin ^{5}{\left (c + d x \right )}}{d} + \frac{28 a^{3} b^{5} \sin ^{6}{\left (c + d x \right )}}{3 d} + \frac{4 a^{2} b^{6} \sin ^{7}{\left (c + d x \right )}}{d} + \frac{a b^{7} \sin ^{8}{\left (c + d x \right )}}{d} + \frac{b^{8} \sin ^{9}{\left (c + d x \right )}}{9 d} & \text{for}\: d \neq 0 \\x \left (a + b \sin{\left (c \right )}\right )^{8} \cos{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))**8,x)

[Out]

Piecewise((a**8*sin(c + d*x)/d + 4*a**7*b*sin(c + d*x)**2/d + 28*a**6*b**2*sin(c + d*x)**3/(3*d) + 14*a**5*b**
3*sin(c + d*x)**4/d + 14*a**4*b**4*sin(c + d*x)**5/d + 28*a**3*b**5*sin(c + d*x)**6/(3*d) + 4*a**2*b**6*sin(c
+ d*x)**7/d + a*b**7*sin(c + d*x)**8/d + b**8*sin(c + d*x)**9/(9*d), Ne(d, 0)), (x*(a + b*sin(c))**8*cos(c), T
rue))

________________________________________________________________________________________

Giac [A]  time = 1.12865, size = 27, normalized size = 1.23 \begin{align*} \frac{{\left (b \sin \left (d x + c\right ) + a\right )}^{9}}{9 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sin(d*x+c))^8,x, algorithm="giac")

[Out]

1/9*(b*sin(d*x + c) + a)^9/(b*d)